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Abstract
We propose a protocol, based on entanglement procedures recently suggested
by Jakschet al, which allows the teleportation of an unknown state of a neutral
atom in an optical lattice to another atom in another site of the lattice without
any irreversible detection.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

The characterization, creation, control and manipulation of quantum entanglement [1, 2] con-
stitutes the basis of the fast-developing research field of quantum information. An entangled
state of two or more [3] particles can be intuitively understood as the situation in which the state
of one particle cannot be determined independently from the state of the others. Of course,
the concept deserves more technical definitions and quantifications, but these are beyond the
scope of this paper.

Quantum computing [4], quantum cryptography [5] and other interesting phenomena con-
stitute excellent examples of the extraordinary potential of quantum entanglement. Among
these phenomena, quantum teleportation [6] is perhaps one of the most striking. Quantum
teleportation consists in the transport of a quantum state from one particle to another in a dis-
embodied way. Following the theoretical proposal of Bennettet al [6], quantum teleportation
has been recently demonstrated experimentally [7]. This teleportation scheme involves a Bell
measurement1, and therefore it is performed in an irreversible way due to the collapse of the
wavefunction. However, it has been shown [9] that quantum teleportation can be performed
in a reversible way, i.e. without any irreversible detection2. In order to obtain such unitary

1 A Bell measurement consists of a joint measurement on two particles, determining whether they are in one of the
four Bell states, namely,|φ±〉 = (|0〉|0〉 ± |1〉|1〉)/√2, |ψ±〉 = (|0〉|1〉 ± |1〉|0〉)/√2. In the experiments performed
up to now, only|ψ+〉 and |ψ−〉 can be identified, but not|φ±〉, whose identification is only possible if the two
particles are coupled by some interaction. Concerning the problem of Bell measurements see, for example, [8].
2 Note that in [10], reversibility just refers to Bob’s step of the teleportation protocol, which as a consequence of the
lack of knowledge about the teleported state is necessarily unitary.
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teleportation it is necessary to consider the detector as a quantum mechanical object, the state
of which is not read out. In this paper, we show how this idea can be implemented in a
particular physical situation.

Several physical systems have been proposed in which entanglement can be created and
manipulated, such as cavity QED [11], photons [12] and ion-traps [13]. Recently it has been
proposed that neutral atoms in an optical lattice can be entangled in a controlled way by using
cold collisions between them [14]. It has been shown [15] how one can use this entangle-
ment mechanism to create GHZ-states [3], or implement parallel quantum computing and
quantum error correction [16]. We show in this paper that in the framework of this particular
entanglement procedure it is possible to implement a reversible teleportation protocol.

The structure of the paper is as follows. In section 2 we review the irreversible and
reversible teleportation schemes, and also present the abstract formulation of our teleportation
proposal. In section 3, we briefly review the entanglement procedure of [14, 15]. In
section 4, we consider explicitly the most simple case of teleportation with just three lattice
sites (in appendix A we analyse the more general case of an arbitrary number of sites). We
finish in section 5 with some conclusions.

2. Teleportation protocols

In this section, we review briefly the general ideas behind the teleportation schemes both with
and without irreversible measurements. For a more detailed discussion we refer to [6, 9, 10].
At the end of the section we present the abstract formalism of our teleportation scheme. In
this section, we follow the notation of [9].

2.1. Irreversible teleportation

We consider three two-level systems, denoted by indices 1, 2 and 3, each with basis states
{|0〉, |1〉}. Initially particle 1 is in an unknown state|φ〉, whereas particles 2 and 3 are in a
maximally entangled state|φ+〉 = (|0〉|0〉 + |1〉|1〉)/√2. Particles 1 and 2 are together at one
place, and particle 3 is at a different place. The teleportation scheme can be well understood
using the decomposition [6]

|φin〉 = |φ〉1|φ+〉23 = 1
2

3∑
J=0

|�(J )〉12R
(J )†
3 |φ〉3 (1)

where|�(J )〉 is the entangled basis for two qubits,

|�(J )〉 =
1∑

l=0

exp(π iln)|l〉|(l + m)mod 2〉/
√

2

(2)

R(J ) =
1∑

k=0

exp(π ikn)|k〉〈(k + m)mod 2|

with

J = n · 2 +m i.e. n = J div 2,m = J mod 2. (3)

Explicitly this corresponds to|�(0)〉 ≡ |φ+〉, |�(1)〉 ≡ |ψ+〉, |�(2)〉 ≡ |φ−〉, |�(3)〉 ≡ |ψ−〉,
the well known Bell states, andR(0) ≡ 1l, R(1) ≡ σ1, R

(2) ≡ σ3, R
(3) ≡ iσ2, whereσ j are the

Pauli matrices.
The teleportation scheme [6] works as follows: first a joint measurement of the state of

particles 1 and 2, i.e. a Bell measurement, is performed; then, using a classical channel, the
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resultJ of the measurement is sent to the other site and, using the valueJ, the appropriate
unitary transformationR(J )

3 is performed on particle 3 to transform the state of particle 3 into
|φ〉. As we observe, this procedure is clearly irreversible, because a measurement of the joint
state of 1 and 2 is necessary.

In the following sections a lower index 1, 2, 3,. . . for a unitary transformation refers
to the particle to which the transformation is applied, and a lower indexa, b, c refers to the
sequence of transformations.

2.2. Reversible teleportation

However, the previous scheme is not the only one which allows to teletransport an unknown
state. In particular, there is a reversible way to perform such a task [9, 10]. Let us assume an
auxiliary particleA (which we shall call the ancilla), which is a four-level system with basis
states{|0〉, |1〉, |2〉, |3〉}. The initial state of the system (1) now becomes

|φin〉 = |0〉A|φ〉1|φ+〉23. (4)

The reversible teleportation scheme works as follows. First, we perform the following unitary
operation on the initial state:

Ra =
3∑

J=0

|�(J )〉12O
(J)
A 〈�(J )|12 (5)

whereO(0)
A ≡ 1l andO

(J)
A ≡ |0〉〈J | + |J 〉〈0| +

∑3
k �=0,J |k〉〈k|, for 0 < J � 3. It is easy to

observe that the state of the system becomes

Ra|φin〉 = 1
2

3∑
J=0

|J 〉A|�(J )〉12R
(J )†
3 |φ〉3. (6)

A second step consists in transporting the particleA near particle 3, and performing a unitary
transformation of the form

Rb =
3∑

J=0

|J 〉AR(J )
3 〈J |A, (7)

i.e. a unitary transformation on 3 conditional on the value of the state of the ancillaA. After
performing operationRb the system becomes

RbRa |φin〉 = 1
2|φ〉3

3∑
J=0

|J 〉A|�(J )〉12 (8)

and therefore the state|φ〉 has been transported into 3, whatever be the final value of 1, 2 and
A. Eventually, ifA were transported back near 1 and 2, one could perform a unitary operation
to restore 1, 2 andA to their original states.

2.3. Our teleportation scheme

In this section, we present the general idea behind our reversible teleportation scheme, in order
to observe the similarities and differences in comparison with the scheme presented previously.
Here we consider three two-level systems, 1, 2 and 3. Note that, as shown in appendix A, the
method can be generalized to an arbitrary number of particles. The lowest non-trivial number
of particles is 3 and therefore is used to explain our scheme. Due to the restrictions of the
physical model that we employ in section 3, all particles, including the ancillas, are in our case



7006 L Santos and D Bruß

qubits, i.e. they have just two states{|0〉, |1〉} (in the case of the employed ancillas we shall
consider a different state|2〉 instead of|1〉). However, in order to perform the teleportation,
we need two bits of information and therefore two ancillas,A1 andA2. We assume that the
initial state of the system is of the form

|φin〉 = |0〉A1|0〉A2|φ〉1|0〉2|0〉3. (9)

As one can observe, this is a difference with respect to the initial state considered in expression
(1): the particles 2 and 3 are not initially entangled, and as we will see later they become
entangled with each other as well as with particle 1 during our transformations.

The first step of our teleportation scheme consists in performing a unitary transformation
Va acting on the six-dimensional space of the three particles 1, 2 and 3, in such a way that the
state of the system becomes

Va|φin〉 =
3∑

J=0

|0〉A1|0〉A2|ψ(J )〉12U
(J )†
3 |φ〉3 (10)

where the exact definitions of|ψ(J )〉12, U
(J )
3 andVa will be presented in section 4. As we

observe, the operationVa entangles the particles 1, 2 and 3. The next step of the teleportation
scheme is to perform a unitary operation of the form

Vb ≡
3∑

J=0

|ψ(J )〉12O
(J)
A1A2

〈ψ(J )|12 (11)

whereO(J)
A1A2

= σJmod2
1,A1

σJdiv2
1,A2

(our notations areσ 0
i = 1l andσ 1

i = σi ). After applyingVb

the state of the system takes the form

VbVa |φin〉 =
3∑

J=0

|ψ ′(J )〉A1A2|ψ(J )〉12U
(J )†
3 |φ〉3 (12)

where the exact form of|ψ ′(J )〉A1A2 is presented in section 4. This step can be called the
‘reading of the states by the ancillas’. Once this is done, we perform a unitary operation of
the form

Vc ≡
3∑

J=0

|ψ ′(J )〉A1A2Q
(J)
3 〈ψ ′(J )|A1A2 (13)

whereQ(J)
3 U

(J )†
3 = cJ Ũ

(0)†
3 . Here the coefficientscJ can be±1, and are calculated in detail

in section 4. Then, the state of the system becomes

VcVbVa|φin〉 = U
(0)†
3 |φ〉3 ⊗

3∑
J=0

cJ |ψ ′(J )〉A1A2|ψ(J )〉12 (14)

where we have moved the state of 3 out of the sum to stress that it is now independent of the
state of 1, 2 and the ancillas. As a final step, we just need to perform the unitary operationU

(0)
3

to conclude the teleportation. The ancillas and 1 and 2 remain in an entangled state. Finally,
but this is not necessary for the teleportation, if we perform againVb the ancillas are brought
back to their original state|0〉A1|0〉A2.
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3. Quantum entanglement of atoms in optical lattices

In this section, we present the physical system in which we shall implement our reversible
teleportation scheme, briefly reviewing [14, 15]. Let us consider a collection of bosonic neutral
atoms occupying the sites of an optical lattice. In order to perform the necessary quantum
logical operations, one has to be able to fill the lattice wells with exactly one particle each.
This can be achieved—at present only theoretically—by loading the lattice from a Bose–
Einstein condensate (BEC), and inducing at sufficiently low temperatures a phase transition
from the superfluid BEC phase into a Mott insulator phase, by increasing the ratio between
the interaction energy inside each well and the tunnelling rate between the wells, as predicted
by the Bose–Hubbard model [17].

One can perform in the system one-atom operations by shining a laser on a desired atom.
However, it is not realistic to assume that only one atom is then affected, because the atoms are
typically separated by aλ/2 distance, whereλ is the wavelength of the laser which creates the
lattice. Fortunately, our teleportation scheme does not employ one-atom unitary operations
specifically for one site, but operations which can, in principle, be applied simultaneously to
all the atoms of the lattice3. In addition to these single-atom operations, two basic two-atom
operations can be perfomed within this physical scheme, based on cold collisions between the
atoms.

3.1. Shift operation

The two internal states of the atoms carrying the quantum information are called{|0〉, |1〉}. As
shown in detail in [15], by properly arranging the detuning and polarization of the lasers which
form the lattice, it can be achieved that each of the internal atomic levels can have a different
potential. In particular, by changing the dephasing between the circularly polarized waves
σ± which form the lattice, the potentials for the different internal levels move in opposite
directions. Let us suppose that the lattice of|0〉 moves to the right, while the lattice of|1〉
moves to the left. Two neighbouringatoms in the lattice occupy sitesj andj + 1 (our numbering
is from left to right). It is clear that, using a lattice displacement, the neighbouring atoms
can only undergo a collision if the atom atj is in |0〉 and the one atj + 1 is in |1〉. Any other
situation prevents the atoms from approaching each other. When the two particles are put in
contact, they can interact via s-wave scattering. As a result, a collisional phase appears, which
can be controlled by basically changing the interaction time. In particular, we shall choose
this collisional phase to beπ . After the desired time the lattice is brought back to its original
position4. We shall call this operation ashift operation, following the notation of [15], and it
can be summarized as follows:

|0〉j |0〉j+1 → |0〉j |0〉j+1

|0〉j |1〉j+1 → −|0〉j |1〉j+1
(15)|1〉j |0〉j+1 → |1〉j |0〉j+1

|1〉j |1〉j+1 → |1〉j |1〉j+1.

3 The only exception is the ancilla, which is assumed to be placed sufficiently far away from the other atoms of the
lattice, and therefore individual unitary operations can be performed on this particular atom.
4 In principle, kinetic phases appear as well, due to the movement of the atoms, but these are trivial one-particle
phases, which can always be incorporated into the definition of states|0〉 and|1〉.



7008 L Santos and D Bruß

3.2. Sweep operation

Let us assume that the atoms have a third atomic level|2〉, which can be displaced like the
levels|0〉 and|1〉 by using the corresponding transport lattice. The operation is basically like
the previous one, but now only those atoms in level|2〉 are going to participate. In particular,
we are going to consider that just the ancilla is excited into the level|2〉. The interaction of
the ancilla with an atom in the sitej can be designed (following the same arguments as above)
in such a way that5

|2〉A|0〉j → |2〉A|0〉j
(16)

|2〉A|1〉j → −|2〉A|1〉j .
Following [15], we shall call this operation asweep operation. By varying the speed with
which the lattice of the state|2〉 is moved during the sweep operation, it is possible to act on
a particular site of the lattice, even when the ancilla crosses through other sites in the lattice,
in particular because the collisional time can be designed in such a way that for the undesired
sites the collisional phase is a multiple of 2π .6

4. Reversible teleportation protocol: three sites only

Let us now show explicitly the transformations for our scheme of reversible teleportation. In
this section we explain the most simple case, in which we have three sites, each occupied
by one atom. In appendix A we analyse the more general case of an arbitrary number of
lattice sites. We shall call these atoms (from left to right in the lattice) 1, 2 and 3. We shall
consider another two atomsA1 andA2, which will act as ancillas, and which are initially
placed sufficiently apart (to the left) from the sites 1, 2 and 3; this requirement is necessary
to avoid the possibility that the unitary operations applied on the site 1, 2 and 3 could affect
the ancillas, and vice versa. We shall also consider that both the ancillas are separated by a
distance larger than the dimensions of the three sites 1, 2 and 3; this requirement is necessary
to avoid the possibility that during the operation of one ancilla on the sites, the other sites
could be affected by the other ancilla. We shall discuss in section 5 the case in which only one
ancilla is present. We begin with the initial state of the system

|φin〉 = |0〉A1|0〉A2|φ〉1|0〉2|0〉3 (17)

where|φ〉 = a|0〉+b|1〉. Our objective is to transport this state from particle 1 to particle 3, in
a reversible way, using the operations of section 3. Our teleportation scheme consists of three
general steps, described in the following three subsections.

4.1. Creation of the entanglement between 1, 2 and 3

As a first step, we perform a Hadamard transform (H)

|0〉 → 1√
2
(|0〉 + |1〉)

(18)
|1〉 → 1√

2
(|0〉 − |1〉)

5 In principle, |2〉A|0〉j → eiφ0|2〉A|0〉j , whereas|2〉A|0〉j → ei(φ0+φ)|2〉A|1〉j , but as the phaseφ0 appears
anyway, it can be reabsorbed in the definition of|2〉A, as is also done with the kinetic phases. By settingφ = π , we
retrieve expression (16).
6 As pointed out in [15], another, perhaps more elegant, way to solve this problem is to consider a three-dimensional
lattice, in which the ancilla can be vertically displaced upwards, moved, and displaced downwards to the desired site
of the lattice.
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H

HH

H

0 1 0

eiπ

H

H

1 1 0

eiπ

Time

Lattice position

1 2 3

Figure 1. Creation of the entanglement between sites 1, 2 and 3. We have depicted the shift
operation as a multiparticle interferometer following [15]. HereH denotes a Hadamard transform.

in each one of the sites 1, 2 and 3. Then, we perform a shift operation (of the lattices of|0〉 and
|1〉), and after this we perform another Hadamard transformation to all the sites. As a result
of these three operations, the state of the system becomes

Va|φin〉 = 1
2|0〉A1|0〉A2

3∑
J=0

|ψ(J )〉12U
(J )†
3 |φ〉3 (19)

where|ψ(J )〉12 = |J div 2〉1|J mod 2〉2, andU(0) = −iσ2, U(1) = σ1,U(2) = −σ3,U(3) = 1l.
As we observe in figure 1, the states of the three sites now become entangled.

4.2. Reading of 1 and 2 using the ancillas

First, a Hadamard transform is performed in each of the ancillas (between levels|0〉 and|2〉),

HAVa |φin〉 = 1
4(|0〉A1 + |2〉A1)(|0〉A2 + |2〉A2) ⊗

3∑
J=0

|ψ(J )〉12U
(J )†
3 |φ〉3. (20)

Then, we perform a sweep to the right of the lattice of|2〉 until the ancillaA1 is placed in site
2, and after this, sweeping again to the right we place the ancillaA2 in site 1. In both cases,
the interaction times are properly designed to obtain a sweep operation as described in (16).
Finally, we displace the lattice of|2〉 back to its original position (see figure 2). The state of
the system after this operatioñV b becomes

Ṽ bHAVa|φin〉 = 1
4

3∑
J=0

(
|0〉A1 + (−1)Jmod2|2〉A1

)

×
(
|0〉A2 + (−1)Jdiv2|2〉A2

)
⊗ |ψ(J )〉12U

(J )†
3 |φ〉3. (21)

Performing a new Hadamard transform in both the ancillas, the state of the system becomes

VbVa |φin〉 = 1
2

3∑
J=0

|ψ ′(J )〉A1A2|ψ(J )〉12U
(J )†
3 |φ〉3 (22)
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A1 A2 1 2 3

H H

H H

π

π

0
1 1 10 0 0

0
2

2

Lattice position

Time

Figure 2. Reading the states of the sites 1 and 2 using the ancillasA1 andA2. H denotes
a Hadamard transform, and the circles denote sweep operations. The sweep operations which
introduce a phaseπ as in (16) are indicated. The rest are assumed to lead to a zero phase.

where|ψ ′(J )〉A1A2 = |J mod 2〉A1|J div 2〉A2 andVb = HAṼ bHA. Therefore, we have copied
the state of 1 (2) intoA2 (A1). Note that the joint operationVb is equivalent to a sequence of
two CNOT gates: (i) with 2 as control qubit andA1 as target; (ii) with 1 as control qubit and
A2 as target.

4.3. Teleportation

Now, we are going to use the values of the ancillas to teleport the state|φ〉 into the site 3.
First of all, we perform a Hadamard transform in the site 3 (in principle this operation can be
performed simultaneously in the other two sites, but since the other sites remain untouched
during this step, we just consider for simplicity that only the site 3 is affected by this operation).
Then, the lattice of|2〉 is swept to the right until|2〉A2 is in contact with the site 3 and interacts
following the rule of (16). Let us call this operatioñVc. After this, we perform again a
Hadamard transform in the site 3 (see figure 3). One calculates that the effect of these steps is
to change the state of the system into

1
2

(
|ψ ′(0)〉A1A2|ψ(0)〉12 − |ψ ′(2)〉A1A2|ψ(2)〉12

)
U

(0)†
3 |φ〉3

+ 1
2

(
|ψ ′(1)〉A1A2|ψ(1)〉12 + |ψ ′(3)〉A1A2|ψ(3)〉12

)
U

(1)†
3 |φ〉3. (23)

After this, we move further to the right of the lattice of|2〉 until |2〉A1 enters in contact with
the site 3, interacts with it following the rule of (16), and then we sweep back the lattice of|2〉 to
its original position. Let us call this operatioñV ′

c . After the joint operationVc = Ṽ ′
cHAṼcHA,

the state of the system takes the form

VcVbVa |φin〉 = 1
2

(
|ψ ′(0)〉A1A2|ψ(0)〉12 − |ψ ′(1)〉A1A2|ψ(1)〉12

− |ψ ′(2)〉A1A2|ψ(2)〉12 − |ψ ′(3)〉A1A2|ψ(3)〉12

)
U

(0)†
3 |φ〉3. (24)
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A1 A2

H

U

H

1 2 3

Time

0 2 0 2 0 1 0 1 0 1

Lattice position

π

π

Figure 3. Using the values deposited in the ancillas during the reading process, the teleportation
is finalized using unitary one-atom operations in site 3, and one sweep of the lattice of the state
|2〉. In the graphic,H denotes the Hadamard transform,U ≡ U(0), and the circles denote sweep
operations. The sweep operations which introduce a phaseπ as in (16) are indicated. The rest are
assumed to lead to a zero phase.

Then, we just need to perform the unitary operationU
(0)
3 to complete the teleportation.

Eventually, if we perform again the operations of reading the ancilla, it is possible to bring
back the ancillas to their initial value|0〉A1|0〉A2, but this is not necessary for the teleportation.

5. Conclusions

In this paper we have presented a teleportation schemewhich allows to teleport an atomic
state of a two-level atom confined in some site of an optical lattice to another two-level atom
in a distant site of the lattice, in a reversible way. In order to achieve this, we have used
entanglement procedures recently developed in [14, 15]. We have shown the similarities
and differences of our teleportation scheme in comparison with other reversible teleportation
schemes. One difference is that we begin the teleportation process with a disentangled system,
and perform a shift operation which entangles all the sites of the lattice; in particular, the particle
which possesses initially the state we want to teleport, and the one in which we want to put the
state at the end of the process, are entangled by this operation. We have shown that by using two
other atoms (ancillas),we can teleport the desired state. This is achieved using basically unitary
one-atom operations (remember that it is not necessary to address just a specific lattice position
in these operations) and sweep operations; in particular, only two sweeps of the lattice of a
third atomic level|2〉 are necessary. The process is fully realized via unitary transformations,
and no measurement is performed; therefore, the process is completely reversible.

Let us make some remarks concerning other aspects of the suggested scheme. The state
|φ〉 can be initialized in the site 1 following a procedure similar to that which can be employed
in the reading step of the teleportation scheme: (a) we consider an ancillaA sufficiently
separated from the rest of the atoms, and illuminate with a laser in such a way that a state
|φ〉A = a|0〉A + b|2〉A is created; (b) then, we perform a Hadamard transform in the site 1,
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and perform a sweep operation betweenA and 1; (c) we perform a Hadamard transform in
the ancilla, and also a second sweep operation betweenA and 1. The result is that the ancilla
becomes|0〉A, while the site 1 acquires the state|φ〉1, as desired. In a similar way, we can
put the final state of the siteN into a sufficiently isolated ancilla and perform a fluorescence
experiment by shining with a laser. This allows us to read the final state, showing that the
teleportation has been actually produced.

We want to emphasize that the purpose of this paper is to explain a possible implementation
of a reversible teleportation scheme in an optical lattice, andnot to show the most simple way
to transport the state|φ〉 from one lattice site to another. This could have been achieved more
easily by swapping the state of the first site with the ancilla as described earlier and then
the state of the ancilla with the second site. The difference between our scheme and simple
swapping is that in our case the information is never transported to and localized in the ancilla,
but spread over the total state and then localized in the second site, therefore exhibiting a
non-trivial quantum operation.

Finally, we have used two ancillas, due to the fact that the ancillas are two-level atoms,
and therefore cannot store four different values as required in the teleportation scheme. The
teleportation can also be performed with just one ancilla, but the scheme becomes more com-
plicated. Basically what is needed is a three-step process: (i) first the ancilla reads the even
sites of the lattice (as shown in appendix A), and after this it is brought to the last lattice site
N; after this step the possible states of the siteN become two instead of four; (ii) the reading
process is repeated, bringing the ancilla to its original state|0〉; (iii) then, the ancilla reads
the odd states as in appendix A, and it is brought toN; after this step the possible states of
the siteN are reduced to just one, and therefore one needs only to perform a known unitary
transformation to conclude the teleportation.

We hope that the presented teleportation protocol will motivate further efforts towards the
realization of simple quantum networks in optical lattices.
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Appendix A. Generalization to an arbitrary number of sites

In this section we shall show how our teleportation scheme can be extended to the case in
which we haveN sites, instead of three as in section 4. We shall consider thatN is an even
number, i.e.N = 2m, but similar procedures can be designed for oddN (as already shown
in the case ofN = 3 in section 4). Therefore, our physical system is now composed ofN
two-level atoms each in one site of the lattice, and two ancillas. We consider that the initial
state of the system is of the form

|φin〉 = |0〉A1|0〉A2|φ〉1

N⊗
j=2

|0〉j . (A1)

Appendix A.1. Creation of the entanglement between 1,2, . . . , N

As in the case of three sites, we perform as a first step a Hadamard transform in each one of
the sites 1, . . . , N . Then, we perform a shift operation (of the lattices of|0〉 and |1〉), and
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after this we perform another Hadamard transformation on all the sites. In appendix B, we
demonstrate that after applying the previous three operations the state of the system becomes
(remember thatm = N/2)

Va|φin〉 = 1

2m
|0〉A1|0〉A2

2N−1∑
J=0

cJ |ψ(J )〉1,...,N−1U
(J )†
N |φ〉N (A2)

where

|ψ(J )〉1,...,N−1 =
N−1⊗
k=1

|a(J )
k 〉k (A3)

with J = ∑N−1
k=1 a

(J )
k 2N−1−k, andcJ can be±1. We define

S(J )
e =

m−1∑
k=1

a
(J )
2k (A4)

S(J )
o =

m∑
k=1

a
(J )
2k−1 (A5)

which count the number of|1〉s in the even sites (exceptN ) and in the odd sites, respectively.
We show in appendix B that the following holds ifm is an even number:

• if S
(J )
e mod 2= 0,S(J )

o mod 2= 0, thenU(J )
N = W(0) ≡ 1 + iσ2.

• if S
(J )
e mod 2= 1,S(J )

o mod 2= 0, thenU(J )
N = W(1) ≡ 1 − iσ2.

• if S
(J )
e mod 2= 0,S(J )

o mod 2= 1, thenU(J )
N = W(2) ≡ σ3 + σ1.

• if S
(J )
e mod 2= 1,S(J )

o mod 2= 1, thenU(J )
N = W(3) ≡ σ3 − σ1.

If m is odd the same is valid, but one has to interchangeS
(J )
e,o mod 2= 0 ↔ S

(J )
e,o mod 2= 1.

Appendix A.2. Reading of 1, . . . , N − 1 using the ancillas

As in the case of three sites, we first perform a Hadamard transform in each of the ancillas
(between levels|0〉 and|2〉),

HAVa |φin〉 = 1

2m+1(|0〉A1 + |2〉A1)(|0〉A2 + |2〉A2) ⊗
2N−1∑
J=0

cJ |ψ(J )〉1,...,N−1U
(J )†
N |φ〉N .

(A6)

Then, we perform a sweep to the right of the lattice of|2〉 until placing the ancilla|2〉A1 in
siteN − 1. Then, we displace|2〉A1 to the left, in such a way that a sweep operation (16) is
performed every two sites beginning withN −1, i.e. in the sitesN −1, N −3, . . . ,3,1. After
this we sweep back to the right of the ancilla state|2〉A2 in such a way that a sweep operation
(16) is performed every two sites beginning withN −2, i.e. in the sitesN −2, N−4, . . . ,4,2.
Finally, we displace the lattice of|2〉 back to its original position. The state of the system
becomes

Ṽ bHAVa|φin〉 = 1

2m+1

2N−1∑
J=0

cJ

(
|0〉A1 + (−1)S

(J )
e mod 2|2〉A1

)

×
(
|0〉A2 + (−1)S

(J )
o mod 2|2〉A2

)
⊗ |ψ(J )〉1,...,N−1U

(J )†
N |φ〉N . (A7)
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Performing a new Hadamard transform in both the ancillas, the state of the system becomes

VbVa|φin〉 = 1

2m

2N−1∑
J=0

cJ |S(J )
e mod 2〉A1|S(J )

o mod 2〉A2|ψ(J )〉1...N−1U
(J )†
N |φ〉N (A8)

with Vb = HAṼ bHA.

Appendix A.3. Teleportation

As in section 4, we are going to use the values of the ancillas to teleport the state|φ〉 into the
siteN. First, we perform a Hadamard transform in the siteN. Then, the lattice of|2〉 is swept
to the right until|2〉A2 is in contact with siteN and interacts following the rule of (16). Let us
call this operationṼ c. After that we perform again a Hadamard transform in the siteN. The
effect of these steps is to change the state of the system into

1

2m

2N−1∑

J=0,S(J )
o mod 2=0

c′
J |S(J )

e mod 2〉A1|0〉A2 ⊗ |ψ(J )〉1...N−1W
(0)†
N |φ〉N

+
1

2m

2N−1∑

J=0,S(J )
o mod 2=1

c′
J |S(J )

e mod 2〉A1|1〉A2|ψ(J )〉1...N−1W
(1)†
N |φ〉N, (A9)

wherec′
J can be±1. After this, we move further to the right of the lattice of|2〉 until |2〉A1

is in contact with siteN, interacts with it following the rule of (16), and we sweep back the
lattice of |2〉 to its original position. Let us call this operatioñV ′

c . After the joint operation
Vc = Ṽ ′

cHAṼcHA, the state of the system takes the form

VcVbVa |φin〉 = 1

2m




2N−1∑
J=0

c′′
J |S(J )

e mod 2〉A1|S(J )
o mod 2〉A2|ψ(J )〉1...N−1


 ⊗ W

(0)†
N |φ〉N .

(A10)

where againc′′
J can be±1. Then, we just need to perform the unitary operationW

(0)
N to

complete the teleportation. As in section 4, if we perform again the operations of reading the
ancilla, it is possible to bring back the ancillas to their initial value|0〉A1|0〉A2, but as in the
previous case this is not necessary for the teleportation.

Appendix B. Proof of equation (A2)

In this appendix we prove that after applying in the initial state (A1) a Hadamard transform
in all the N sites (here we denote this operation asH⊕N ), performing a shift operation (in
the following we call itL), and applying againH⊕N , the state of the system becomes that of
expression (A2). We prove this using induction arguments. Let us callQN = H⊕(N)LH⊕(N).
It is easy to observe that for the case of four sites, expression (A2) is fulfilled. Let us assume
that for the case ofN = 2m sites, (A2) is fulfilled, i.e.

|$〉1,...,N = 1

2m

2N−1∑
J=0

cJ |ψ(J )〉1...N−1U
(J )†
N |φ〉N (B1)

with cJ = ±1. Now, we will add two more sites (N + 1) and (N + 2) to the right of the site
N. The effect ofQN+2 on the initial state for theN + 2 sites can be easily calculated from the
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state|$〉1,...,N using the unitary character of the operations; then

|$〉1,...,N+2 = QN+2

[
Q−1

N |$〉1,...,N ⊗ |0〉N+1|0〉N+2

]

= 1

2m+1

2N−1∑
J=0

cJ |ψ(J )〉1...N−1 ⊗
3∑

k=0

bk|k div 2〉N |k mod 2〉N+1O
(k)U

(J )†
N |φ〉N+2

= 1

2m+1

2N+2−1∑
J=0

c′
J |ψ ′(J )〉1...N+1U

′(J )†
N+2 |φ〉N (B2)

whereO(0) ≡−iσ2,O
(1) ≡σ1,O

(2) ≡ σ3,O
(4) ≡ 1l, andbk andc′

J can be±1. Let us assume

thatm is even, and thereforeU(J )†
N satisfies the requirements of appendix A. It is possible to

obtain, after some calculations, that the new unitary operatorsU
′(J )†
N+2 satisfy the same

requirements but interchangeS(J )
e,o mod 2 = 0 ↔ S

(J )
e,o mod 2 = 1. We note that the same

applies ifm is odd. Therefore, we have proved that if forN sites (A2) is satisfied, this also
holds forN + 2 sites. Since forN = 4 the statement is true, the proof is completed by induction.
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[6] Bennett C H, Brassard G, Crépeau C, Josza R, Peres A and Wootters W K 1993Phys. Rev. Lett. 70 1895
[7] Bouwmeester D, Pan J-W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997Nature 390 575

Boschi D, Branca S, De Martini F, Hardy L and Popescu S 1998Phys. Rev. Lett. 80 1121
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